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Numerical study of a three-dimensional generalized stadium billiard

Thomas Papenbrock
Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, Washington 98195

~Received 2 December 1999!

We study a generalized three-dimensional stadium billiard and present strong numerical evidence that this
system is completely chaotic. In this convex billiard chaos is generated by the defocusing mechanism. The
construction of this billiard uses cylindrical components as the focusing elements and thereby differs from the
recent approach pioneered by Bunimovich and Rehacek@Commun. Math. Phys.189, 729 ~1997!#. We inves-
tigate the stability of lower-dimensional invariant manifolds and discuss bouncing ball modes.

PACS number~s!: 05.45.Jn, 05.45.1a
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Billiards are simple yet nontrivial models of classical
chaotic systems. Of particular importance are Sinai’s billia
@1# and Bunimovich’s stadium@2# since they are proven to
be completely chaotic and ergodic. These two billiards
hibit two different chaos generating mechanisms, nam
dispersion and defocusing. Upon scattering off a dispers
boundary element nearby trajectories diverge, and cons
tive collisions with dispersing elements lead to an increas
divergence. In focusing billiards, nearby trajectories co
verge after a collision with the focusing boundary elemen
is only after the trajectories pass through the focusing p
that they start to diverge. Provided the free flight~including
reflections at neutral boundary elements! is sufficiently long,
the focusing may be overcompensated by the divergence
result in a defocusing. It is important to note that a we
focusing requires a long free flight before defocusing resu
While dispersing billiards like Sinai’s may easily be gene
alized to more than two dimensions, it was not until recen
that completely chaotic higher-dimensional focusing billiar
were constructed. Bunimovich and Rehacek proved
spherical caps attached to three-dimensional billiards w
neutral boundary elements may be chaotic and ergodic@3#.
The main difficulty to overcome was the weak focusing
directions transverse to the plane that is defined by cons
tive scatterings of a trajectory with a spherical cap. Bu
movich and Rehacek solved this problem by putting cert
conditions on the size and distance of spherical caps. T
ensures that any focusing eventually turns into defocus
However, numerical and analytical studies showed that th
conditions may be relaxed@4#, and that the mechanism o
defocusing also works beyond three dimensions@5#.

In this work we want to study a different construction
chaotic focusing billiards in three dimensions. The basic id
is as follows. Let us use cylindrical instead of spherical co
ponents as the focusing boundary elements. A cylindr
element focuses in two-dimensional planes perpendicula
the cylinder axis and is neutral in the directions of the ax
This avoids the problem caused by the weak focusing
spherical caps. The generation of high-dimensional chaos
quires, however, more than one cylindrical boundary e
ment, and their axes must be differently oriented. As an
ample we study numerically a three-dimension
generalization of the stadium billiard. Its construction is
lated to the construction of geodesic flows on hig
dimensional~boundaryless! manifolds that are products o
PRE 611063-651X/2000/61~4!/4626~3!/$15.00
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lower-dimensional manifolds@6#. Because of its use of cy
lindrical focusing elements it is also related to the billia
model of a self-bound three-body system@7#. Unlike the lat-
ter, the generalized three-dimensional stadium can easil
realized experimentally. This is of particular interest in vie
of recent experiments that investigate wave chaos in th
dimensional elastomechanical systems@8,9# and microwave
cavities@10–12#.

In addition to these possible applications the results p
sented in this work are also of interest to further fields
physics. We recall that billiards are being widely studied
the field of quantum chaos~for a review, see, e.g., Ref.@13#!,
and play an important role in extending this field to syste
with more than two degrees of freedom@4,7,14,15#. They are
also central to the investigation of three-dimensional wa
chaos in resonant optical cavities@16#.

Let us consider the three-dimensional billiard depicted
Fig. 1. We denote the radii of the lower and upper half c
inders asr 1 and r 2, respectively, and the distance betwe
these half cylinders as 2a. This billiard can be viewed as a
generalization of the two-dimensional stadium to three
mensions. Its sections with planes normal to thex andy axes
are partly desymmetrized two-dimensional stadia. One m
expect this system to display high-dimensional chaos, si
@17# ‘‘In many-dimensional billiards with chaotic behavio
the local instability has to be in all its two-dimensional se
tions.’’ Note that the upper and lower half cylinders defoc

FIG. 1. Three-dimensional generalization of the stadium b
liard.
4626 © 2000 The American Physical Society
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in the planes normal to thex axis and they axis, respectively.
Note further that this property persists even when the
tance between the two half-cylinders approaches 2a50.

In what follows let us fixr 15r 25r and a50. To com-
pute the Lyapunov spectrum we draw 104 uniformly distrib-
uted phase space points at random, fixing the velocityuvW u
51. We follow the time evolution for each of these pha
space points for about 53105 bounces off the boundary an
compute the Lyapunov spectrum from the tangent m
@18,19#. For the time evolution we note that the partic
moves freely inside the billiard and undergoes specular
flections upon collisions with the boundary. LetvW and vW 8
denote the velocity immediately before and after a collis
with the boundary, respectively. One hasvW 85vW 22(vW •nW )nW ,
where nW is the unit normal vector of the boundary at th
collision point. The tangent map is a product of maps cor
sponding to free flights and to reflections. It governs the ti
evolution of infinitesimally small deviations from the traje
tory. Let (xW ,vW ) and (xW8,vW 8) denote initial and final phas
space points of a free flight, respectively. The correspond
tangent map has elements

]xj8

]xk
5d jk ,

]xj8

]vk
5td jk ,

]v j8

]xk
50,

]v j8

]vk
5d jk , j ,k51,2,3.

To describe a reflection at the cylindrical boundary elem
of radiusr we choose coordinates such that the cylinder a
is parallel to thez axis. Let (xW ,vW ) and (xW8,vW 8) denote phase
space points immediately before and after a reflection,
spectively. The corresponding tangent map has element

]xj8

]xk
5d jk22njnk ,

]xj8

]vk
50, j ,k51,2,3,

]v j8

]vk
5d jk22njnk ,

]v j8

]x3
50,

]v38

]xk
50, j ,k51,2,3,

]v j8

]xk
52

2

r S wnd jk1njwk2nkwj2
w2

wn
njnkD , j ,k51,2,

where nW is the outward pointing unit normal vector at th
boundary,wW 5(v1 ,v2) is the velocity in the plane normal t
the z axis and its normal componentwn5nW •wW . A reflection
at the flat parts of the boundary may be described using
equations above after takingr→`.

In a conservative system with three degrees of freed
the Lyapunov exponents come in pairs (l j ,l2 j ), j 51,2,3,
with l1>l2>l350 andl j1l2 j50. Our numerical results
~mean values, variances, maximal and minimal values! are
listed in Table I. We observe two positive Lyapunov exp
nents, thus indicating that truly high-dimensional chaos
developed. Note that all of the followed trajectories ha
positive Lyapunov exponentsl1 and l2. We checked our
numerical results by comparing forward with backward ev
lution and by using the alternative method pioneered by B
-
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ettinet al. @20#. Within our numerical accuracy we found on
pair of vanishing Lyapunov exponents and confirmed t
the sum of conjugated exponents vanishes. We repeated
computation for a larger ensemble of 105 trajectories and a
shorter time evolution of about 53104 bounces off the
boundary. This computation reproduced the mean value
Table I but the distributions were broader. This is due to
shorter time evolution, which leads to somewhat less c
verged Lyapunov exponents. Again, no single stable tra
tory was found. Therefore, our numerical results stron
suggest that the system under consideration is comple
chaotic.

It is interesting to investigate the stability of lowe
dimensional invariant manifolds. Such manifolds exist
systems with discrete symmetries and in rotationally inva
ant many-body systems composed of identical particles@21#,
though they need not necessarily be connected to a disc
symmetry@15#. Since their stability properties may devia
considerably from the system average, it is important to
vestigate them more closely. In what follows let us consid
two lower-dimensional invariant manifolds, namely,~i! y
50,py50 and ~ii ! y56r /A2,py50 or z5r /A2,pz50.
Note that manifold~i! is a symmetry plane of the billiard
whereas manifold~ii ! is a less trivial example of a low
dimensional invariant manifold. Note further that manifo
~i! and manifold~ii ! can be viewed as a partly desymm
trized and a fully two-dimensional stadium, respective
Though these manifolds are of measure zero in phase sp
they may exhibit special stability properties in transverse
rections@21,4#. This behavior may cause wave function sca
ring upon quantization@15,22,7#. We start 1000 randomly
drawn trajectories inside each of the invariant manifolds a
compute the Lyapunov spectrum by following their tim
evolution for about 53105 collisions with the boundary. One
pair of Lyapunov exponents describes the stability in dir
tions transverse to the manifold while the remaining tw
pairs correspond to the inside motion. The results listed
Table II show that both invariant manifolds are unstable
side and in the transverse direction. A comparison w
Table I shows that the local instability close to the invaria
manifolds deviates from the average instability inside

TABLE I. Results for Lyapunov exponents~mean values, vari-
ances, minimal and maximal values! obtained from an ensemble o
104 runs. All quantities are given in units of 1/r .

j l j Dl j lmin
( j ) lmax

( j )

1 0.364 0.001 0.347 0.368
2 0.330 0.001 0.314 0.334

TABLE II. Results for Lyapunov exponents~mean values and
variances! for invariant manifolds, obtained from ensembles of 13

runs.l uu andl' denote the Lyapunov exponents inside and tra
verse to the corresponding invariant manifold. All quantities a
given in units of 1/r .

Manifold l uu l'

~i! 0.43060.003 0.30560.002
~ii ! 0.39160.004 0.36260.004



of
ni-
w

ns

io
fo
wo

o
do
po

.
re
ha
on

t
to
ri
n
o
a
a
ry
ili
dy
e
e
h

all
rd.
g
he

g

y
all

bit;
nt
all
ec-

is,

g
s
eti-
di-

ee-
fo-
po-
fers
We
sid-
si-
of

gy
i-

4628 PRE 61BRIEF REPORTS
billiard. This is not surprising since stability properties
invariant sets like periodic orbits or low-dimensional ma
folds fluctuate around the system average. In lo
dimensional open systems such a behavior may have co
erable influence on quantum transport@23#. Our results hint
at a generalization of these observations to three dimens
We note that the Lyapunov exponent inside each mani
agrees with the one reported for the corresponding t
dimensional stadium billiard@24#.

We now turn to the more general casea.0 andr 1Þr 2.
To be definite we fixa51, r 15A2, r 25A3 and compute
the Lyapunov spectrum from 104 trajectories with uniformly
distributed random initial conditions and a time evolution
about 53105 bounces off the boundary. As before, we
not find a single stable trajectory and both Lyapunov ex
nents are positive, i.e.,l150.18560.001, l250.157
60.001 in units of 1/a. This shows that truly high-
dimensional chaos exists for these parameter values, too

Let us also discuss focusing billiards in more than th
dimensions. Bunimovich’s and Rehacek’s construction
successfully been used to create chaos in four-dimensi
billiards @4#, and it works in higher dimensions as well@5#. It
has the advantage that a single spherical cap attached
billiard with otherwise flat boundaries may be sufficient
render the system chaotic. This is different with the cylind
cal elements used in this work. While we do not see a
argument in principle that would prohibit the generation
chaos in high-dimensional billiards by means of cylindric
components~i.e., such as are focusing in a two-dimension
plane only!, it certainly requires several of such bounda
elements to generate the desired degree of local instab
The billiard model of a self-bound interacting many-bo
system@25# might be a promising candidate for such a sc
nario. However, more work is necessary for a better und
standing of focusing cylindrical boundary elements in hig
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dimensional systems.
Finally, we want to comment on the role of bouncing b

orbits in the three-dimensional generalized stadium billia
For a.0 there is an infinite number of families of bouncin
ball orbits, and the situation is similar to the case of t
three-dimensional Sinai billiard. Theoretical@14# and experi-
mental @11# studies of this billiard show that the bouncin
ball modes@26# dominate the length spectrum~i.e., the Fou-
rier transform of the fluctuating part of the spectral densit!.
In three dimensions, the amplitude of each bouncing b
mode is enhanced byO(k) (k being the wave vector! when
compared with the amplitude of an unstable periodic or
an infinite number of bouncing ball modes with differe
length thus dominates the length spectrum at practically
lengths. This makes the semiclassical analysis of level sp
tra in terms of periodic orbits a difficult task. The situation
however, different fora50 and r 15r 25r . In this case,
there are only two families of bouncing ball orbits havin
equal length 4r . Thus, the billiard considered in this work i
a promising candidate for further experimental and theor
cal investigations of wave chaotic phenomena in three
mensions.

In summary, we have studied a generalized thr
dimensional stadium billiard that is chaotic due to the de
cusing mechanism. The construction uses cylindrical com
nents as focusing boundary elements and thereby dif
from the one proposed by Bunimovich and Rehacek.
presented strong numerical evidence that the system con
ered displays hard chaos. In particular, we found two po
tive Lyapunov exponents and confirmed the instability
lower-dimensional invariant manifolds.

This work was supported by the Deptartment of Ener
under Grant No. DE-FG-06-90ER40561. I thank L. A. Bun
movich for bringing Ref.@6# to my attention and H. Rehfeld
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