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Numerical study of a three-dimensional generalized stadium billiard
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We study a generalized three-dimensional stadium billiard and present strong numerical evidence that this
system is completely chaotic. In this convex billiard chaos is generated by the defocusing mechanism. The
construction of this billiard uses cylindrical components as the focusing elements and thereby differs from the
recent approach pioneered by Bunimovich and Reh&€eknmun. Math. Physl89 729 (1997]. We inves-
tigate the stability of lower-dimensional invariant manifolds and discuss bouncing ball modes.

PACS numbegps): 05.45.Jn, 05.45:a

Billiards are simple yet nontrivial models of classically lower-dimensional manifoldg6]. Because of its use of cy-
chaotic systems. Of particular importance are Sinai’s billiardindrical focusing elements it is also related to the billiard
[1] and Bunimovich’s stadiuni2] since they are proven to model of a self-bound three-body systér}. Unlike the lat-
be completely chaotic and ergodic. These two billiards exier, the generalized three-dimensional stadium can easily be
hibit two different chaos generating mechanisms, name|yfea|ized experimentally. This is of particular interest in view
dispersion and defocusing. Upon scattering off a dispersin§f recent experiments that investigate wave chaos in three-
boundary element nearby trajectories diverge, and consecdimensional elastomechanical systef@®] and microwave
tive collisions with dispersing elements lead to an increasingavities[10-12.
divergence. In focusing billiards, nearby trajectories con- In addition to these possible applications the results pre-
verge after a collision with the focusing boundary element. ItSeénted in this work are also of interest to further fields in
is only after the trajectories pass through the focusing poinPhysics. We recall that billiards are being widely studied in
that they start to diverge. Provided the free fligincluding  the field of quantum chad$or a review, see, e.g., RdfL3]),
reflections at neutral boundary elemerisssufficiently long, @nd play an important role in extending this field to systems
the focusing may be overcompensated by the divergence agth more than two degrees of freedgt7,14,13. They are
result in a defocusing. It is important to note that a weak@lso central to the investigation of three-dimensional wave
focusing requires a long free flight before defocusing resultschaos in resonant optical cavitigh6]. N o
While dispersing billiards like Sinai's may easily be gener- Let us consider the three-dimensional billiard depicted in
alized to more than two dimensions, it was not until recentlyFig. 1. We denote the radii of the lower and upper half cyl-
that completely chaotic higher-dimensional focusing billiardsinders asr; andr,, respectively, and the distance between
were constructed. Bunimovich and Rehacek proved thaihese half cylinders asa This billiard can be viewed as a
spherical caps attached to three-dimensional billiards witigeneralization of the two-dimensional stadium to three di-
neutral boundary elements may be chaotic and ergi@ic mensions. Its sections with planes normal toxfendy axes
The main difficulty to overcome was the weak focusing inare partly desymmetrized two-dimensional stadia. One might
directions transverse to the plane that is defined by consecgxpect this system to display high-dimensional chaos, since
tive scatterings of a trajectory with a spherical cap. Buni-[17] “In many-dimensional billiards with chaotic behavior
movich and Rehacek solved this pr0b|em by putt|ng Certaiﬁhe local |nStab|l|ty has to be in all its two-dimensional sec-
conditions on the size and distance of spherical caps. Thigons.” Note that the upper and lower half cylinders defocus
ensures that any focusing eventually turns into defocusing.
However, numerical and analytical studies showed that these
conditions may be relaxef], and that the mechanism of
defocusing also works beyond three dimensifBis

In this work we want to study a different construction of
chaotic focusing billiards in three dimensions. The basic idea
is as follows. Let us use cylindrical instead of spherical com-
ponents as the focusing boundary elements. A cylindrical
element focuses in two-dimensional planes perpendicular to
the cylinder axis and is neutral in the directions of the axis.
This avoids the problem caused by the weak focusing in
spherical caps. The generation of high-dimensional chaos re-
quires, however, more than one cylindrical boundary ele-
ment, and their axes must be differently oriented. As an ex-
ample we study numerically a three-dimensional
generalization of the stadium billiard. Its construction is re-
lated to the construction of geodesic flows on high- FIG. 1. Three-dimensional generalization of the stadium bil-
dimensional(boundaryless manifolds that are products of liard.
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in the planes normal to theaxis and they axis, respectively. TABLE |. Results for Lyapunov exponentmean values, vari-
Note further that this property persists even when the disances, minimal and maximal valyesbtained from an ensemble of
tance between the two half-cylinders approachas Q. 10" runs. All quantities are given in units ofrl/

In what follows let us fixr;=r,=r anda=0. To com-

pute the Lyapunov spectrum we draw*ihiformly distrib- | Aj Al NUN U
uted phase space points at random, fixing the veldtﬁ'ty 1 0.364 0.001 0.347 0.368
=1. We follow the time evolution for each of these phases 0.330 0.001 0.314 0.334

space points for about>’610° bounces off the boundary and
compute the Lyapunov spectrum from the tangent map

[18,19. For the time evolution we note that the particle ettinet al.[20]. Within our numerical accuracy we found one
moves freely inside the billiard and undergoes specular repair of vanishing Lyapunov exponents and confirmed that
flections upon collisions with the boundary. Letand v’ the sum of conjugated exponents vanishes. We repeated the

denote the velocity immediately before and after a collisioncOmputation for a larger ensemble of*lfdajectories and a

. . 2 % o N2 shorter time evolution of about>610* bounces off the
with the boundary, respectively. One has=v—=2(v-n)n, boundary. This computation reproduced the mean values of

wheren is the unit normal vector of the boundary at the apje | put the distributions were broader. This is due to the
collision point. The tangent map is a product of maps corégporter time evolution, which leads to somewhat less con-
sponding to free flights and to reflections. It governs the time{/erged Lyapunov exponents. Again, no single stable trajec-
evolution of infinitesimally small deviations from the trajec- tory was found. Therefore, our numerical results strongly
tory. Let (x,v) and ’,v") denote initial and final phase suggest that the system under consideration is completely
space points of a free flight, respectively. The correspondinghaotic.
tangent map has elements It is interesting to investigate the stability of lower-
dimensional invariant manifolds. Such manifolds exist in
vy systems with discrete symmetries and in rotationally invari-
Xy ant many-body systems composed of identical parti@és
though they need not necessarily be connected to a discrete
(9vj’ _ symmetry[15]. Since their stability properties may deviate
=50 = Ok j.k=1,2,3. considerably from the system average, it is important to in-
K vestigate them more closely. In what follows let us consider

To describe a reflection at the cylindrical boundary elemenfW© lower-dimensional invariant manifolds, namely) y

of radiusr we choose coordinates such that the cylinder axis_ O’pyio and.f(iil) y== r/\2,p,=0 Olr Z= r/f\/%pzf"(_).
is parallel to thez axis. Let (,v) and (’,v’) denote phase Note that manifold(i) is a symmetry plane of the billiard

space points immediately before and after a reflection, reyvhereas manifold(ii) is a less wivial example of a low-

spectivelv. The corresponding tangent map has elements dimensional invariant manifold. Note further that manifold
P y: P g tang P (i) and manifold(ii) can be viewed as a partly desymme-

ox! ox! trized and a fully two-dimensional stadium, respectively.

i j . : .
—L=6,-2nn,, —-=0, j k=123, Though these manifolds are of measure zero in phase space,
IX vy they may exhibit special stability properties in transverse di-

, ) ) rections[21,4]. This behavior may cause wave function scar-
v j vy ring upon quantizatio15,22,7. We start 1000 randomly

i i
=5, —L=t8y,
IX ! Uk ]

_J = . _— - —l = — i = . . . . - . .
90 jk— 2NN, X3 0, Xy 0, k=123, drawn trajectories inside each of the invariant manifolds and
compute the Lyapunov spectrum by following their time
ov! 2 w2 evolution for about X 10° collisions with the boundary. One
a_x:(: -7 Wi i+ NjWi— nw; — VTnnjnk . 1,k=1,2, pair of Lyapunov exponents describes the stability in direc-

tions transverse to the manifold while the remaining two
> . . pairs correspond to the inside motion. The results listed in
wheren |sethe outward pointing unit normal vector at the Table 1l show that both invariant manifolds are unstable in-
boundaryw=(vy,v>) is the velocity in the plane normal to side and in the transverse direction. A comparison with
the z axis and its normal componemtn=ﬁ-v71. A reflection  Table | shows that the local instability close to the invariant
at the flat parts of the boundary may be described using thmanifolds deviates from the average instability inside the
equations above after taking- oo.

In a conservative system with three degrees of freedom TABLE Il. Results for Lyapunov exponentsnean values and
the Lyapunov exponents come in palnsj ()\—])!J = 1’2’3’ VarianceSfOr invariant manifolds, obtained from ensembles O? 10

with A;=\,=\3=0 and\;+\_,=0. Our numerical results runs.\ | andX, denote the Lyapunov exponents inside and trans-
(mean values variancesl maxJimaI and minimal valees VErse to the corresponding invariant manifold. All quantities are
listed in Table I. We observe two positive Lyapunov expo-3\ven in units of 17
nents, thus indicating that truly high-dimensional chaos ha?/lanifold

developed. Note that all of the followed trajectories have al A
positive Lyapunov exponents; and\,. We checked our (j) 0.430+0.003 0.303:0.002
numerical results by comparing forward with backward evo-j) 0.391+0.004 0.362-0.004

lution and by using the alternative method pioneered by Ben
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billiard. This is not surprising since stability properties of
invariant sets like periodic orbits or low-dimensional mani-
folds fluctuate around the system average. In
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dimensional systems.
Finally, we want to comment on the role of bouncing ball

low-orbits in the three-dimensional generalized stadium billiard.

dimensional open systems such a behavior may have consiffor a>0 there is an infinite number of families of bouncing

erable influence on quantum transpi@8]. Our results hint

ball orbits, and the situation is similar to the case of the

at a generalization of these observations to three dimensioniree-dimensional Sinai billiard. Theoreti¢a¥| and experi-
We note that the Lyapunov exponent inside each manifoldnental[11] studies _of this billiard show tha.t the bouncing
agrees with the one reported for the corresponding twoPall modes26] dominate the length spectrutie., the Fou-

dimensional stadium billiar{24].

We now turn to the more general cage 0 andr#r,.
To be definite we fixa=1, r;=+2, r,=+3 and compute
the Lyapunov spectrum from 4@rajectories with uniformly
distributed random initial conditions and a time evolution of
about 5< 10° bounces off the boundary. As before, we do
not find a single stable trajectory and both Lyapunov expo
nents are positive, i.e.\;=0.185-0.001, »,=0.157
+0.001 in units of 1&. This shows that truly high-
dimensional chaos exists for these parameter values, too.

Let us also discuss focusing billiards in more than three
dimensions. Bunimovich’s and Rehacek’s construction has

successfully been used to create chaos in four-dimension
billiards[4], and it works in higher dimensions as wid]. It

has the advantage that a single spherical cap attached to d

billiard with otherwise flat boundaries may be sufficient to
render the system chaotic. This is different with the cylindri-
cal elements used in this work. While we do not see an
argument in principle that would prohibit the generation o
chaos in high-dimensional billiards by means of cylindrica
componentgi.e., such as are focusing in a two-dimensional
plane only, it certainly requires several of such boundary

elements to generate the desired degree of local instability.

The billiard model of a self-bound interacting many-body

Epresented strong numerical evidence that the system consid-

rier transform of the fluctuating part of the spectral density
In three dimensions, the amplitude of each bouncing ball
mode is enhanced b®(k) (k being the wave vectdpmwhen
compared with the amplitude of an unstable periodic orbit;
an infinite number of bouncing ball modes with different
length thus dominates the length spectrum at practically all
lengths. This makes the semiclassical analysis of level spec
tra in terms of periodic orbits a difficult task. The situation is,
however, different fora=0 andr,;=r,=r. In this case,
there are only two families of bouncing ball orbits having
equal length 4. Thus, the billiard considered in this work is
promising candidate for further experimental and theoreti-
< | investigations of wave chaotic phenomena in three di-
ensions.

In summary, we have studied a generalized three-
finensional stadium billiard that is chaotic due to the defo-
cusing mechanism. The construction uses cylindrical compo-
nents as focusing boundary elements and thereby differs
rom the one proposed by Bunimovich and Rehacek. We

a

ered displays hard chaos. In particular, we found two posi-
tive Lyapunov exponents and confirmed the instability of
lower-dimensional invariant manifolds.

This work was supported by the Deptartment of Energy

system[25] might be a promising candidate for such a sce-under Grant No. DE-FG-06-90ER40561. | thank L. A. Buni-
nario. However, more work is necessary for a better undermovich for bringing Ref[6] to my attention and H. Rehfeld

standing of focusing cylindrical boundary elements in high-

for useful discussions on bouncing ball modes.

[1] Ya. G. Sinai, Sov. Math. DokH, 1818(1963.
[2] L. A. Bunimovich, Funct. Anal. Appl8, 254 (1974.
[3] L. A. Bunimovich and J. Rehacek, Commun. Math. PI&9,
729 (1997.
[4] L. Bunimovich, G. Casati, and |. Guarneri, Phys. Rev. L&ff.
2941(1996.
[5] L. A. Bunimovich and J. Rehacek, Commun. Math. P&,
227(1998.
[6] K. Bruns and M. Gerber, J. Reine Angew. Mat#50, 1
(1994).
[7] T. Papenbrock and T. Prosen, Phys. Rev. 184262 (2000.
[8] R. L. Weaver J. Acoust. Soc. Ar85, 1005(1989.
[9] C. Ellegaard, T. Guhr, K. Lindemann, H. Q. Lorensen, J.
Nyg%rd, and M. Oxborrow, Phys. Rev. Left5, 1546(1995.
[10] S. Deus, P. M. Koch, and L. Sirko, Phys. Rev.5E 1146
(1995.
[11] H. Alt, C. Dembowski, H.-D. Gra R. Hofferbert, H. Rehfeld,
A. Richter, R. Schuhmann, and T. Weiland, Phys. Rev. Lett.
79, 1026(1997).
[12] U. Dorr, H.-J. Stekmann, M. Barth, and U. Kuhl, Phys. Rev.
Lett. 80, 1030(1998.
[13] T. Guhr, A. MUler-Groeling, and H. A. Weidenniier, Phys.
Rep.299 189 (1998.

[14] H. Primack and U. Smilansky, Phys. Rev. Lef4, 4831
(1999; e-print chao-dyn/9907006.

[15] T. Prosen, Phys. Lett. £33 323(1997); 233 332(1997.

[16] J. U. Nackel and A. D. Stone, Natur@ondon 385, 45(1997.

[17] L. A. Bunimovich, Physica 83, 58 (1988.

[18] Ch. Dellago and H. A. Posch, Phys. Rev5E 2401(1995.

[19] M. Sieber, Nonlinearityl1, 1607 (1998.

[20] G. Benettin, L. Galgani, and J. M. Strelcyn, Phys. Revi4
2338(1976; G. Benettin, C. Froeschle, and J. P. Scheidecker,
ibid. 19, 2454(1979.

[21] T. Papenbrock and T. H. Seligman, Phys. Lett2A8 229
(1996.

[22] T. Papenbrock, T. H. Seligman, and H. A. Weideitlam,
Phys. Rev. Lett80, 3057(1998.

[23] L. Kaplan, Phys. Rev. B9, 5325(1999; W. E. Bies, L. Ka-
plan, and E. J. Helleunpublishedl

[24] G. Benettin and J. M. Strelcyn, Phys. Rev.1& 773(1978.

[25] T. Papenbrock, Phys. Rev. &1, 034602(2000; Phys. Rev. E
61, 1337(2000.

[26] H. D. Grd, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C.
Rangacharyulu, A. Richter, P. Schardt, and H. A. Weiden-
muller, Phys. Rev. Lett69, 1296(1992.



